Pauphine | PSL¥*

UNIVERSITE PARIS

e '=> COMPUTER SCIENCE, DECISION-MAKING, AND DATA = FURTHER EDUCATION

Algorithmic and advanced
Programming in Python

Eric Benhamou eric.benhamou@dauphine.eu
Chien-Chung.Huang chien-chung.huang@ens.fr
Sofia Vazquez sofia.Vazquez@dauphine.eu

Outline

1. Some algorithmic complexity question
2. Algorithm for double linked list
3. Stack and queues codes

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Some complexity and running time guestions 1/2

Problem-21 Find the complexity of the below recurrence:
=t e 37 (n 1),/ n> 0,
I'(n) (/
(1, otherwise
Problem-22 Find the complexity of the below recurrence:

(27(n 1) l,ifn>0,

(1, otherwise

I'(n)

Problem-23 What i1s the running time of the following function?

del Function(n):
1 =8 =]
while s < n:
1 = 1+
S$+1

print("*")

Function(20)

Douphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Some complexity and running time guestions 2/2

Problem-24 Find the complexity of the functon given below.

def Function(n):
1= 1
count = 0
while 1*1 <n:
count = count +1
1 =1+]
print(count)

Function(20)

Problem-25 What is the complexity of the program given below:

def Function(n):
count = 0
for 1 in range(n/2, n):
3
while] + n/2 <= n:
k=1
while k <= n:
count = count + |
k=k*?2
123+ 4

print (count)

Function(20)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Now play with linked list

 Download the file

Advanced Programming & Algo - 1 - Lab resource.py

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Now play with linked list

* The file Advanced Programming & Algo - 1 - Lab resource.py

In moodle contains an incomplete implementation of a Python
LinkedList class. Take a minute to look over this code. Open a Python
Interpreter and experiment with creating a LinkedL.ist object and calling

the methods that have already been implemented.

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Exercise: question 1

1. Implement the count method, which should return a count of the
number of times that the given item is found in the list.

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Question 2: Index method

 Implement the index method. This will be very similar to the included
__contains___ method, except that it needs to return the index of the
element if it is found, rather than a simple boolean. Thus, you will
need to track the current index as you traverse the linked list.

Dauphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Question 3

 Implement the append method, which should add a new element onto
the tail of the list. You must also remember to handle the special case
when the list is empty. Given the current implementation, there is no
O(1) way to add an element to the tail of the list. You have two options
to implement this function:

* |terate to the end of the list, finding the last node and adding the new
node after that node. This will be O(n) but that is ok for the purposes
of this lab.

« Add a tall reference to the LinkedLlist class and use it to add a new
item In O(1) time. This Is a better solution, but will require you to
change several other functions to properly maintain the tail pointer.

Dauphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Question 4: equal and not equal

* Implementthe eq and ne methods. For these functions,
equality should be defined as follows: both lists have the same number
of elements, and each pair of corresponding elements in the list are
also equal (as defined by the == operator). You should implement only
one of these operators from scratch; the other should delegate to the
first.

Dauphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Problem 1

 Implement stack with fixed size array

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

11

Problem 2

 Implement stack with dynamic array

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

12

Problem 3

 Implement stack with linked list

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

13

Problem 4

* Implement stack with queues

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

14

Problem 5 : discuss and implement

Discuss how stacks can be used for checking balancing of symbols.

Examples:
Example Valid? | Description
(A+B)HC-D) Yes The expression has a balanced symbol
((A+B)+(C-D) | No One closing brace 1s missing
(A+B)+C-D)) | Yes Opening and immediate closing braces correspond
(A+B)+{C-D]} | No

The last closing brace does not correspond with the first opening parenthesis

Paup

hine | PSL%

UNIVERSITE PARIS

Algorithmic and advanced Programming in Python

15

Problem 6: discuss and implement

Discuss infix to posthix conversion algorithm using stack.

Infix: An inlix expression is a single letter, or an operator, proceeded by one infix string and followed by another
Infix string,

A

AtB

(A+B)+ (C-D)

Prefix: A prefix expression is a single letter, or an operator, followed by two prefix strings. Every prefix string
longer than a single variable contains an operator, first operand and second operand.

A
+AB
++AB-CD

Postfix: A postfix expression (also called Reverse Polish Notation) is a single letter or an operator, preceded by
two postfix strings. Every postfix string longer than a single variable contains first and second operands followed
by an operator.

A

AB+

AB+CD-+

Prefix and postfix notions are methods of writing mathematical expressions without parenthesis. Time (o
evaluate a postfix and prefix expression is O(n), where n is the number of elements in the array.

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

16

Problem 7: discuss and implement

Discuss postfix evaluation using stacks?

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

17

