
Algorithmic and advanced

Programming in Python

1

Eric Benhamou eric.benhamou@dauphine.eu 

Chien-Chung.Huang chien-chung.huang@ens.fr

Sofía Vázquez sofia.Vazquez@dauphine.eu

Lab 5



Algorithmic and advanced Programming in Python

Outline

1. Some algorithmic complexity question

2. Algorithm for double linked list

3. Stack and queues codes

2



Algorithmic and advanced Programming in Python

Some complexity and running time questions 1/2

3



Algorithmic and advanced Programming in Python

Some complexity and running time questions 2/2

4



Algorithmic and advanced Programming in Python

Now play with linked list

• Download the file

Advanced Programming & Algo - 1 - Lab resource.py 

5



Algorithmic and advanced Programming in Python

Now play with linked list

• The file Advanced Programming & Algo - 1 - Lab resource.py 

in moodle contains an incomplete implementation of a Python 
LinkedList class. Take a minute to look over this code. Open a Python 
interpreter and experiment with creating a LinkedList object and calling 
the methods that have already been implemented.

6



Algorithmic and advanced Programming in Python

Exercise: question 1

1. Implement the count method, which should return a count of the 
number of times that the given item is found in the list.

7



Algorithmic and advanced Programming in Python

Question 2: Index method

• Implement the index method. This will be very similar to the included 
__contains__ method, except that it needs to return the index of the 
element if it is found, rather than a simple boolean. Thus, you will 
need to track the current index as you traverse the linked list.

8



Algorithmic and advanced Programming in Python

Question 3

• Implement the append method, which should add a new element onto 
the tail of the list. You must also remember to handle the special case 
when the list is empty. Given the current implementation, there is no 
O(1) way to add an element to the tail of the list. You have two options 
to implement this function:

• Iterate to the end of the list, finding the last node and adding the new 
node after that node. This will be O(n) but that is ok for the purposes 
of this lab.

• Add a _tail reference to the LinkedList class and use it to add a new 
item in O(1) time. This is a better solution, but will require you to 
change several other functions to properly maintain the tail pointer.

9



Algorithmic and advanced Programming in Python

Question 4: equal and not equal

• Implement the __eq__ and __ne__ methods. For these functions, 
equality should be defined as follows: both lists have the same number 
of elements, and each pair of corresponding elements in the list are 
also equal (as defined by the == operator). You should implement only 
one of these operators from scratch; the other should delegate to the 
first.

10



Algorithmic and advanced Programming in Python

Problem 1

• Implement stack with fixed size array

11



Algorithmic and advanced Programming in Python

Problem 2

• Implement stack with dynamic array

12



Algorithmic and advanced Programming in Python

Problem 3

• Implement stack with linked list

13



Algorithmic and advanced Programming in Python

Problem 4

• Implement stack with queues

14



Algorithmic and advanced Programming in Python

Problem 5 : discuss and implement

15



Algorithmic and advanced Programming in Python

Problem 6: discuss and implement

16



Algorithmic and advanced Programming in Python

Problem 7: discuss and implement

17


